Saturday, 1 July 2017

Exponentiell Gewichtet Gleitender Durchschnitt Pdf

Der exponentiell gewichtete gleitende Durchschnitt (EWMA) ist eine Statistik für die Überwachung des Prozesses, die die Daten in einer Weise, die weniger und weniger Gewicht auf Daten, da sie weiter entfernt werden, in der Zeit. Vergleich von Shewhart-Kontrolldiagramm und EWMA-Kontrolltafel-Techniken Für die Shewhart-Diagrammsteuerungstechnik hängt die Entscheidung über den Zustand der Kontrolle des Prozesses zu irgendeinem Zeitpunkt (t) ausschließlich von der letzten Messung aus dem Verfahren ab, Der Grad der Richtigkeit der Schätzungen der Kontrollgrenzen aus historischen Daten. Für die EWMA-Steuerungstechnik hängt die Entscheidung von der EWMA-Statistik ab, die ein exponentiell gewichteter Durchschnitt aller vorherigen Daten ist, einschließlich der letzten Messung. Durch die Wahl des Gewichtungsfaktors (Lambda) kann die EWMA-Steuerprozedur empfindlich auf eine kleine oder allmähliche Drift in dem Prozess eingestellt werden, während die Shewhart-Steuerprozedur nur dann reagieren kann, wenn der letzte Datenpunkt außerhalb einer Kontrollgrenze liegt. Definition von EWMA Die berechnete Statistik ist: mbox t lambda Yt (1-lambda) mbox ,,, mbox ,,, t 1,, 2,, ldots ,, n. Wobei (mbox 0) der Mittelwert der historischen Daten (Ziel) (Yt) ist die Beobachtung zur Zeit (t) (n) die Anzahl der zu überwachenden Beobachtungen einschließlich (mbox 0) (0 Interpretation der EWMA - Dots sind die Rohdaten, die gezackte Linie ist die EWMA-Statistik im Laufe der Zeit. Das Diagramm zeigt uns, dass der Prozess in der Steuerung ist, weil alle (mbox t) zwischen den Kontroll-Grenzen liegen. Allerdings scheint es einen Trend nach oben für die letzten 5 Der EWMA-Ansatz hat ein attraktives Merkmal: Es erfordert relativ wenig gespeicherte Daten, um unsere Schätzung an jedem Punkt zu aktualisieren, benötigen wir nur eine vorherige Schätzung der Varianzrate und des jüngsten Beobachtungswertes Die RiskMetrics-Datenbank (die von JP Morgan produziert und öffentlich zugänglich gemacht wird, ändert sich die Schätzung aufgrund der jüngsten Änderungen in der Rendite der zugrunde liegenden Variablen langsam ) Verwendet die EWMA zur Aktualisierung der täglichen Volatilität. WICHTIG: Die EWMA-Formel geht nicht von einem lang anhaltenden durchschnittlichen Varianzniveau aus. So bedeutet das Konzept der Volatilität Reversion nicht von der EWMA erfasst. Die ARCHGARCH Modelle sind dafür besser geeignet. Ein sekundäres Ziel der EWMA ist es, Veränderungen in der Volatilität nachzuvollziehen, so dass für kleine Werte die jüngsten Beobachtungen die Schätzung sofort beeinflussen, und für Werte, die näher bei 1 liegen, ändert sich die Schätzung langsam auf die jüngsten Änderungen in den Renditen der zugrunde liegenden Variablen. Die RiskMetrics-Datenbank (erstellt von JP Morgan), die 1994 veröffentlicht wurde, verwendet das EWMA-Modell zur Aktualisierung der täglichen Volatilitätsschätzung. Das Unternehmen festgestellt, dass über eine Reihe von Marktvariablen, gibt dieser Wert der Prognose der Varianz, die am nächsten zu realisierten Varianz Rate kommen. Die realisierten Varianzraten an einem bestimmten Tag wurden als gleichgewichteter Durchschnitt der folgenden 25 Tage berechnet. Um den optimalen Wert von lambda für unseren Datensatz zu berechnen, müssen wir die realisierte Volatilität an jedem Punkt berechnen. Es gibt mehrere Methoden, so wählen Sie ein. Als nächstes wird die Summe der quadratischen Fehler (SSE) zwischen der EWMA-Schätzung und der realisierten Volatilität berechnet. Schließlich minimieren die SSE durch Variieren des Lambdawertes. Klingt einfach Es ist. Die größte Herausforderung besteht darin, einen Algorithmus zur Berechnung der realisierten Volatilität zu vereinbaren. Zum Beispiel wählten die Leute bei RiskMetrics die folgenden 25 Tage, um die realisierte Varianzrate zu berechnen. In Ihrem Fall können Sie einen Algorithmus, der Tägliche Volumen, HILO und OPEN-CLOSE Preise verwendet. Q 1: Können wir EWMA verwenden, um die Volatilität mehr als einen Schritt voraus zu schätzen (oder prognostizieren) Die EWMA-Volatilitätsdarstellung setzt keine langfristige Durchschnittsvolatilität voraus, so dass die EWMA für jeden Prognosehorizont über einen Schritt hinaus eine Konstante zurückgibt Wert:


No comments:

Post a Comment